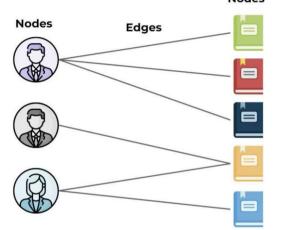
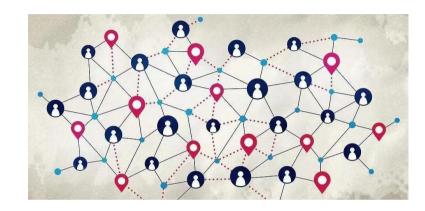


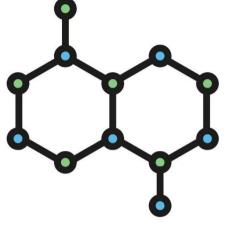
Capsule: An Out-of-Core Training Mechanism for Colossal GNNs

Yongan Xiang, Zezhong Ding, Rui Guo,

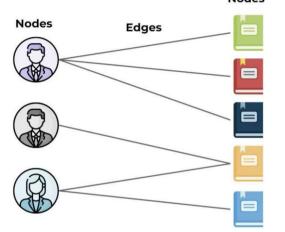
Shangyou Wang, Xike Xie, and S. Kevin Zhou


June. 26, 2025

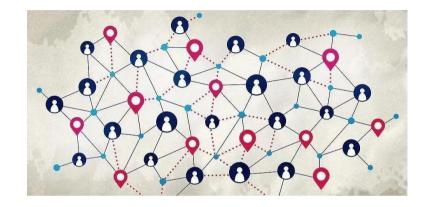



In the Dragon Ball series by **Akira Toriyama** (1955-2024), Capsule Corporation designs **capsules** that can accommodate huge items like motorcycles, houses, and spaceships.

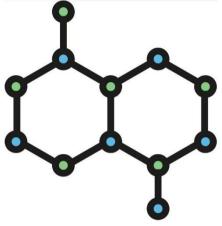
➢ Graph Neural Networks (GNNs) have been widely applied.



Recommendation Systems


Social Network Analysis

Chemistry and Bioinformatics


Graph Neural Networks (GNNs) have been widely applied.

Social Network Analysis

Chemistry and Bioinformatics

- How to train large graphs?
 - □ Only CPU?
 - GPU w/ main memory to store the graphs?
 - GPU w/ secondary memory (e.g., SSD) to store the graphs? (Out-of-Core)

□ Only CPU?

Poor Parallelism and Slow Computation

□ Only CPU?

Poor Parallelism and Slow Computation

GPU (w/ main memory to store the graphs)?

- Poor Parallelism and Slow Computation
- High Main Memory Cost
- Significant Data Transfer Between Main Memory and GPU Memory

□ Only CPU?

Poor Parallelism and Slow Computation

□ GPU (w/ main memory to store the graphs)?

- Poor Parallelism and Slow Computation
- High Main Memory Cost
- Significant Data Transfer Between Main Memory and GPU Memory

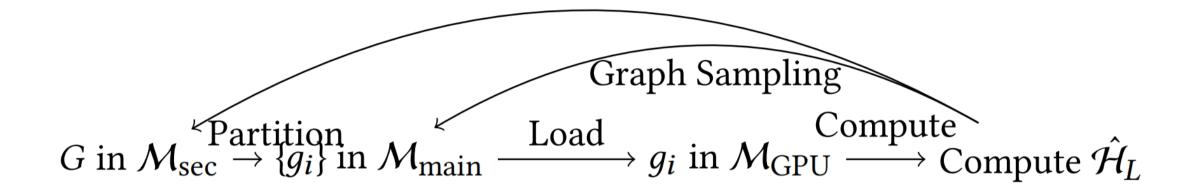
GPU (w/ secondary memory to store the graphs)? ----- Out-of-Core

- Poor Parallelism and Slow Computation
- ➤ High Main Memory Cost
- Significant Data Transfer Among Secondary Memory, Main Memory and GPU Memory.

- GPU (w/ secondary memory to store the graphs)? ----- Out-of-Core
- SOTA GNN training systems
- DGL (AWS, arXiv'2018)
 PyG (ICLR'2019)

 MariusGNN (Eurosys'2023) Graph Partitioning
 Ginex (VLDB'2022) Caching

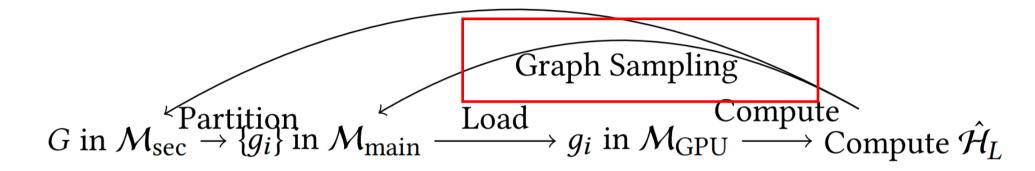
- GPU (w/ secondary memory to store the graphs)? ----- Out-of-Core
- SOTA GNN training systems
- DGL (AWS, arXiv'2018)
 PyG (ICLR'2019)


MariusGNN (Eurosys'2023)
 Graph Partitioning
 Ginex (VLDB'2022)
 Caching

Graph Sampling

During graph sampling, frequent data transfers often occur between GPU memory and main memory or even secondary memory.

 $G \text{ in } \mathcal{M}_{\text{sec}} \xrightarrow{\checkmark} \{g_i\} \text{ in } \mathcal{M}_{\text{main}} \xrightarrow{\longleftarrow} g_i \text{ in } \mathcal{M}_{\text{GPU}} \xrightarrow{\text{Compute}} Compute \hat{\mathcal{H}}_L$


GNN Training System Background (Cont.)

Frequent data transfers, extensive computation and I/O overhead
 Sampling size is user-defined, not fully utilizing GPU parallelization

Capsule

> Traditional Out-of-Core GNN Training:

> Capsule Out-of-Core GNN Training:

- The entire sampling process is conducted on the GPU memory.
- We can eliminate the I/O cost during sampling.

$$G \text{ in } \mathcal{M}_{\text{sec}}^{\text{Partition}} \to \{g_i\} \text{ in } \mathcal{M}_{\text{main}} \xrightarrow{\text{Load}} g_i \text{ in } \mathcal{M}_{\text{GPU}} \xrightarrow{\swarrow \text{Sampling}} \text{Compute} \hat{\mathcal{H}}_L$$

Challenges

It is difficult to streamline data transferring from secondary storage to main memory and finally to GPU memory.

Challenges

It is difficult to streamline data transferring from secondary storage to main memory and finally to GPU memory.

> Challenge 1: Traditional partitioning is different from partitioning designed for GNNs.

Traditional Graph Partitioning (Minimizing Vertex Replication)

Graph Partitioning for GNNs (Minimizing training metric)

$$\begin{array}{l} \text{minimize RF } s.t. \ \frac{k \max_{i=1,...k} |P_i|}{|E|} \leq \tau \\ \\ \text{RF} = \quad \underbrace{\frac{\sum_{v \in V} |P(v)|}{|V|}} \\ \end{array}$$

Vertex Replication Form

minimize Metric :=
$$\sum_{p_i \in P} |p_i| + \sum_{p_i \in P} |\Psi(p_i)|$$

Raw Cost

Completion Cost

Capsule: An Out-of-Core Training Mechanism for Colossal GNNs

Propagation-based Graph Partitioning (Algorithm 1)

> Challenge 1: Traditional graph partitioning is different from graph partitioning for GNNs.

Graph Partitioning Metric for GNNs

minimize Metric :=
$$\sum_{p_i \in P} |p_i| + \sum_{p_i \in P} |\Psi(p_i)|$$

Raw Cost Completion Cost

Graph Partitioning Algorithm for GNNs

 Constructing the *L*-hop neighbor induced subgraphs of the training nodes (Propagation-based)

② Merging the subgraphs based on the heuristic strategy
 (Estimated size of resulting graph < B_{GPU})

Bitwise Optimization (GPU Parallel Acceleration)

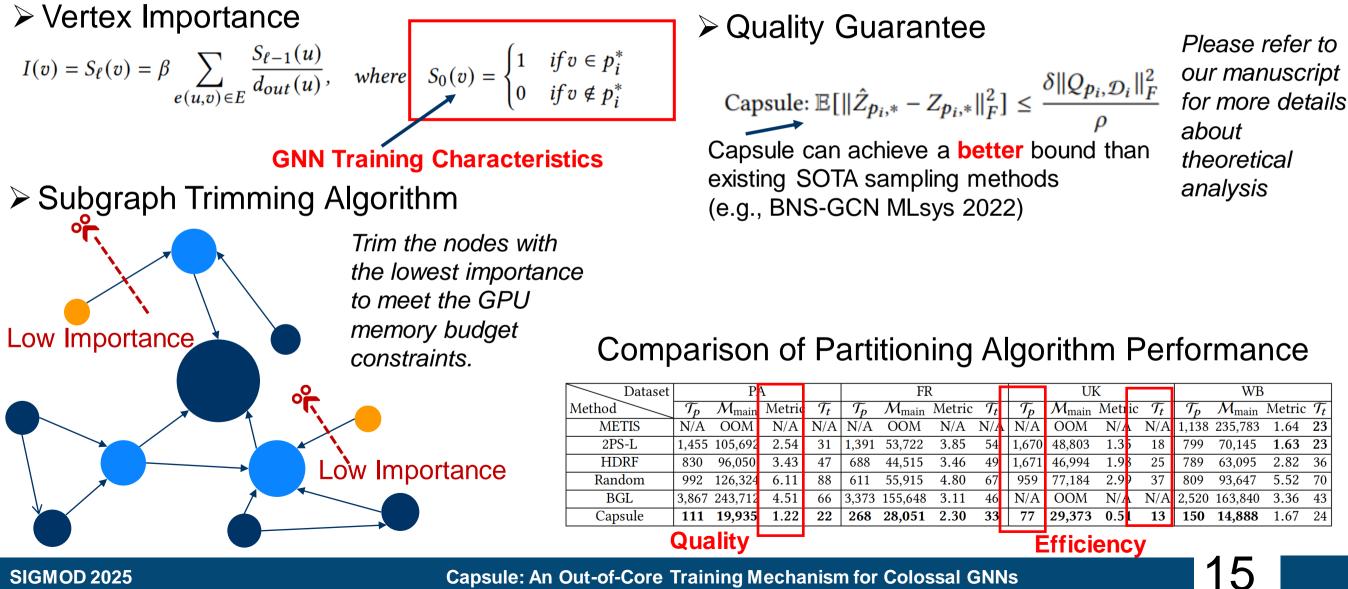
Please refer to our manuscript for more details about this optimization

Challenges

After Algorithm 1, we cannot ensure that the subgraphs can be completely loaded into GPU memory.

□ The resulting subgraph size is estimated.

□ The training graph might have high connectivity and density.


> Challenge 2: It is non-trivial to fit subgraphs into GPU memory.

Subgraph Size > GPU Memory Budget

Out of GPU Memory Issue

Vertex Importance-based Subgraph Trimming (Algorithm 2)

> Challenge 2: It is non-trivial to fit subgraphs into GPU memory.

SIGMOD 2025

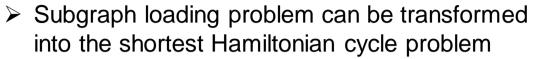
Capsule: An Out-of-Core Training Mechanism for Colossal GNNs

23

23

36

70


43

24

Subgraph Incremental Loading (Further Optimization)

 \triangleright

Distance

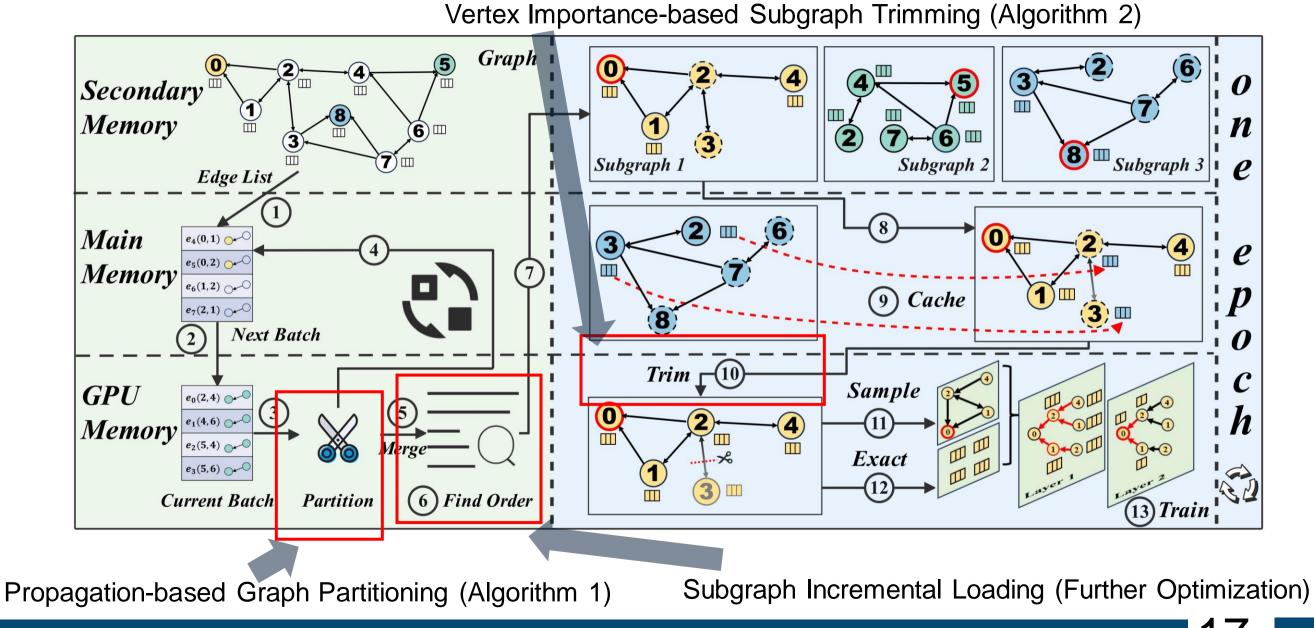
(1)(2)(3)(4)(5)

23456

(1)(2)(3)(4)(9)

34568

24567


 (g_2)

 $Dist(g_i, g_j) = |g_i \cdot V| + |g_j \cdot V| - 2|g_i \cdot V \cap g_j \cdot V|$ Please refer toour manuscript for more details about this modeling $Cost = Dist(g'_k, g_1) + \sum_{i=1}^{k-1} Dist(g_i, g_{i+1})$

 \mathbf{D}

Capsule Framework

Evaluations

>Baseline Framework

DGL, PyG, MariusGNN, Ginex

GNN Algorithms

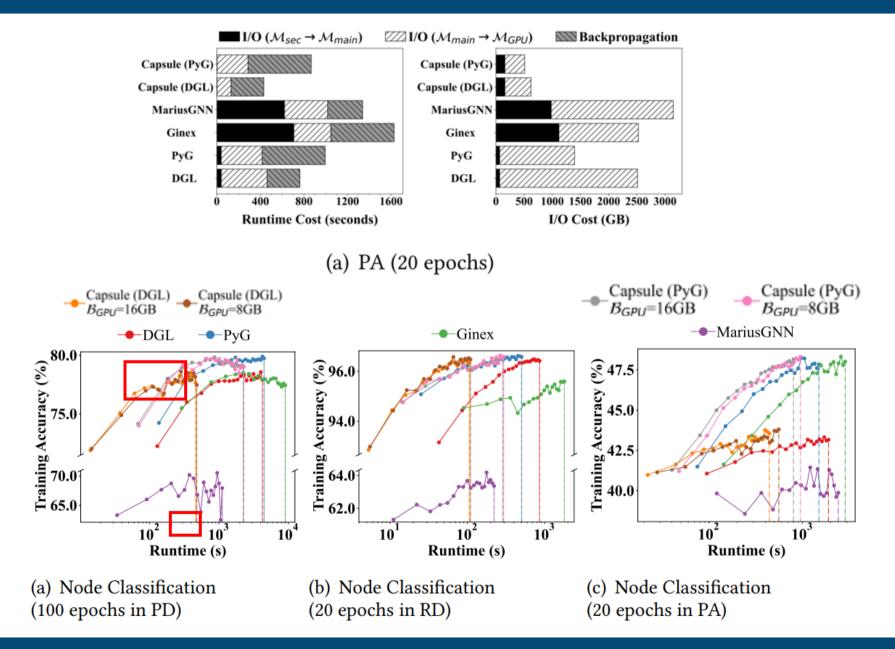
□ GraphSage, GCN, GAT

> Training Task

□ Node Classification, Link Prediction

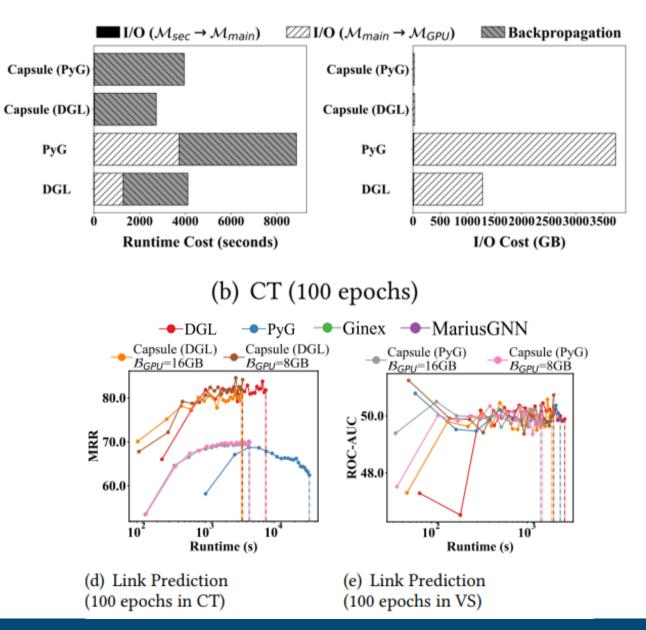
Real-world Graphs

□ 3 labeled Graphs from OGB and DGL for node classification (RD, PD, PA)


□ 3 w/o labeled Graphs from SNAP for System performance testing (UK, FR, WB)

□ 2 labeled Graphs from OGB for link prediction task (CT, VS)

Performance (For more information, please refer to our manuscipt)


Runtime and Space Cost Performance on Different Graphs (20 epochs, time/sec, Mmain/GB)																
Γ	Staga Dataset		RD			PD		PA		FR		UK		WB		
	Stage	Method	time	$\mathcal{M}_{ ext{main}}$		I										
		MariusGNN	28	7.7	38	8.4	955	108.7	754	118.4	1,153	192.7	618	71.6		I
	Preprocessing		40	7.0	86	8.3	1,845	197.0	807	144.0	N/A	OOM	2,019	146.0		ļ
12x ir	nprovemen	Capsule	25	3.5	27	4.3	208	20.7	413	26.3	136	28.3	270	14.3		ļ
	Runtime	DGL	879	9.1	879	12.3	2,139	223.5	1,106	73.5	899	204.5	818	95.7	in	I
		PyG	512	7.5	893	8.6	1,620	152.0	1,176	109.5	1,720			luction	1	
E	fficiency	MariusGNN	242	13.0	249	10.2	2,874	21.5	3,495	27.0	3,935			nemor	y	
	(GraphSAGE)		1,800	8.4	1,940		2,872	11.7	2,681	30.2	N/A	OOM		age ⁹		
	· · ·	Capsule (DGL)	106	2.7	94	3.0	442	9.1	656	23.7	264	7.3	476	13.2		Į
	<u>ــــــــــــــــــــــــــــــــــــ</u>	Capsule (PyG)	292	2.7	456	3.0	802	9.1	972	23.7	554	7.3	472	13.1	1	l
	ر	DGL	899	11.4	835	12.3	2,159	224.5	1,104	73.5	877	190.0	810	110.4		
	· _ · · [/]	PyG	504	7.7	929	8.8	1,628	152.5	1,211	109.5	2,094	157.0	1,357	91.8		ļ
	Training	MariusGNN	Fail	Fail		ļ										
	(GCN)	Ginex	1,560	8.4	1,640		2,804	11.7	2,601	30.2	N/A	OOM	5,522	53.9		
		Capsule (DGL)	110	2.7	106	3.0	456	9.1	674	23.7	286	7.3	510	13.2		ļ
		Capsule (PyG)	254	2.7	480	3.0	840	9.1	1,100	23.7	604	7.3	526	13.1		ļ
Play-ar	nd-plug 🚽	DGL	359	9.0	253	12.2	951	142.3	442	117.8	501	175.4	690	111.4		ļ
		PyG	312	13.0	357	8.3	1,379	147.0	698	107.0	816	163.2	1,298	91.8		ļ
	Training	MariusGNN	668	12.1	547	6.8	1,544	156.6	2,008	136.5	2,038	212.7	1,300	111.7		
	(GAT)	Ginex	Fail	Fail		I										
•	1	Capsule (DGL)	112	2.7	128	2.9	580	9.3	940	23.3	362	7.7	640	12.8		
l	<u>ا ا</u>	Capsule (PyG)	109	7.2	134	11.8	501	9.0	1,374	23.4	366	7.7	848	13.0		ļ

Runtime and I/O Cost Analysis (Node Classification)

Capsule: An Out-of-Core Training Mechanism for Colossal GNNs

Runtime and I/O Cost Analysis (Link Prediction)

Capsule: An Out-of-Core Training Mechanism for Colossal GNNs

Different Hardware Configurations

Stage	Dataset	I	PA	Ţ	JK	WB		
	Method	time	$\mathcal{M}_{ ext{main}}$	time	$\mathcal{M}_{ ext{main}}$	time	$\mathcal{M}_{ ext{main}}$	
Prep.	MariusGNN	1,046	107	N/A	OOM	792	71.5	
	Ginex	N/A	OOM	N/A	OOM	N/A	OOM	
	Capsule	199.1	19.6	315.0	28.4	237.6	13.9	
Sage	DGL	N/A	OOM	N/A	OOM	N/A	OOM	
	PyG	N/A	OOM	N/A	OOM	84.3	92.1	
	MariusGNN	N/A	OOM	N/A	OOM	Fail	Fail	
	Ginex	N/A	OOM	N/A	OOM	N/A	OOM	
	Capsule (DGL)	370	9.0	212	7.0	430	13.0	
	Capsule (PyG)	630	9.0	414	6.0	392	13.0	

Device 1: GeForce RTX 4080 (16G), $M_{main} = 128G$

Device 2: GeForce RTX 3060 (12G), $M_{main} = 64G$

			- / /	тит				
Stage	Dataset	I	PA	J	JK	WB		
	Method	time	$\mathcal{M}_{ ext{main}}$	time	$\mathcal{M}_{ ext{main}}$	time	$\mathcal{M}_{ ext{main}}$	
Prep.	MariusGNN	N/A	OOM	N/A	OOM	N/A	OOM	
	Ginex	N/A	OOM	N/A	OOM	N/A	OOM	
	Capsule	456.6	19.8	362.9	28.6	574.4	14.5	
Sage	DGL	N/A	OOM	N/A	OOM	N/A	OOM	
	PyG	N/A	OOM	N/A	OOM	N/A	OOM	
	MariusGNN	N/A	OOM	N/A	OOM	N/A	OOM	
	Ginex	N/A	OOM	N/A	OOM	N/A	OOM	
	Capsule (DGL)	538	9.3	344	6.4	1,060	23.1	
	Capsule (PyG)	1,514	9.6	1,000	7.1	1,120	23.1	

Most systems encounter out-of-memory issues

Conclusions

We propose Capsule, an innovative out-of-core mechanism to tackle the scalability challenges of GNN Training.

> Algorithms

- ✓ Propagation-based partitioning algorithm optimized for GNN training
- ✓ Vertex importance-based subgraph trimming algorithm to fit subgraphs within GPU memory
- Modeling of the subgraph loading problem as the shortest Hamiltonian cycle problem to optimize loading order

Future work

 \checkmark In the future, we plan to extend the training mechanism of Capsule to

dynamic GNN training scenarios.

Capsule Source Code

Manuscript

