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In the Dragon Ball series by Akira Toriyama

(1955-2024), Capsule Corporation designs 

capsules that can accommodate huge items like 

motorcycles, houses, and spaceships. 

Akira Toriyama



GNN Training System Background 
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➢ Graph Neural Networks (GNNs) have been widely applied. 

Recommendation Systems Social Network Analysis Chemistry and Bioinformatics



GNN Training System Background 
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➢ How to train large graphs?

 Only CPU?

 GPU w/ main memory to store the graphs?

 GPU w/ secondary memory (e.g., SSD) to store the graphs? (Out-of-Core)

➢ Graph Neural Networks (GNNs) have been widely applied. 

Recommendation Systems Social Network Analysis Chemistry and Bioinformatics
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 Only CPU?

➢ Poor Parallelism and Slow Computation
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 Only CPU?

➢ Poor Parallelism and Slow Computation

 GPU (w/ main memory to store the graphs)?

➢ Poor Parallelism and Slow Computation

➢ High Main Memory Cost

➢ Significant Data Transfer Between Main Memory and GPU Memory
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 Only CPU?

➢ Poor Parallelism and Slow Computation

 GPU (w/ main memory to store the graphs)?

➢ Poor Parallelism and Slow Computation

➢ High Main Memory Cost

➢ Significant Data Transfer Between Main Memory and GPU Memory

 GPU (w/ secondary memory to store the graphs)? ------ Out-of-Core

➢ Poor Parallelism and Slow Computation

➢ High Main Memory Cost

➢ Significant Data Transfer Among Secondary Memory, Main Memory and 

GPU Memory.



GNN Training System Background 
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◆ DGL (AWS, arXiv’2018)

◆ PyG (ICLR’2019)

➢ SOTA GNN training systems

◆ MariusGNN (Eurosys’2023)

Graph Partitioning

◆ Ginex (VLDB’2022)

Caching

➢ GPU (w/ secondary memory to store the graphs)? ------ Out-of-Core
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◆ DGL (AWS, arXiv’2018)

◆ PyG (ICLR’2019)

➢ SOTA GNN training systems

◆ MariusGNN (Eurosys’2023)

Graph Partitioning

◆ Ginex (VLDB’2022)

Caching

During graph sampling, frequent data transfers often occur between GPU 

memory and main memory or even secondary memory.

➢ GPU (w/ secondary memory to store the graphs)? ------ Out-of-Core



GNN Training System Background (Cont.)
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 Frequent data transfers, extensive computation and I/O overhead

 Sampling size is user-defined, not fully utilizing GPU parallelization



Capsule
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➢Traditional Out-of-Core GNN Training: 

➢Capsule Out-of-Core GNN Training: 

◆ The entire sampling process is conducted on the GPU memory. 

◆ We can eliminate the I/O cost during sampling.

`

`



Challenges
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➢ It is difficult to streamline data transferring from secondary storage to 

main memory and finally to GPU memory.



Challenges
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Traditional Graph Partitioning
(Minimizing Vertex Replication)

➢Challenge 1: Traditional partitioning is different from partitioning designed for GNNs.

Graph Partitioning for GNNs
(Minimizing training metric)

➢ It is difficult to streamline data transferring from secondary storage to 

main memory and finally to GPU memory.



Propagation-based Graph Partitioning (Algorithm 1)
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Bitwise Optimization (GPU Parallel Acceleration)

➢Graph Partitioning Metric for GNNs ➢Graph Partitioning Algorithm for GNNs

Please refer to our manuscript for 

more details about this optimization

①Constructing the 𝐿-hop neighbor induced 

subgraphs of the training nodes 

(Propagation-based)

②Merging the subgraphs based on the 

heuristic strategy 

(Estimated size of resulting graph < 𝐵𝐺𝑃𝑈)

➢Challenge 1: Traditional graph partitioning is different from graph partitioning for GNNs.



Challenges
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➢Challenge 2: It is non-trivial to fit subgraphs into GPU memory.

Subgraph Size > GPU Memory Budget

Out of GPU Memory Issue

➢After Algorithm 1, we cannot ensure that the subgraphs can be 

completely loaded into GPU memory.

 The resulting subgraph size is estimated.

 The training graph might have high connectivity and density.



Vertex Importance-based Subgraph Trimming (Algorithm 2)
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Trim the nodes with 

the lowest importance 

to meet the GPU 

memory budget 

constraints.

➢Quality Guarantee➢Vertex Importance

GNN Training Characteristics

➢Subgraph Trimming Algorithm

Capsule can achieve a better bound than 

existing SOTA sampling methods 

(e.g., BNS-GCN MLsys 2022)

Please refer to 

our manuscript 

for more details 

about 

theoretical 

analysis

Low Importance

Low Importance

➢Challenge 2: It is non-trivial to fit subgraphs into GPU memory.

Comparison of Partitioning Algorithm Performance

Quality Efficiency



Subgraph Incremental Loading (Further Optimization)
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➢ Subgraph loading problem can be transformed 

into the shortest Hamiltonian cycle problem 
➢ Distance

➢ Total Cost

1.5 approximation ratio

Analysis on Subgraph Loading

Please refer to 

our manuscript for 

more details 

about this 

modeling

Christofides Algorithm



Capsule Framework
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Propagation-based Graph Partitioning (Algorithm 1) Subgraph Incremental Loading (Further Optimization)

Vertex Importance-based Subgraph Trimming (Algorithm 2)



Evaluations
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➢Baseline Framework

 DGL, PyG, MariusGNN, Ginex

➢Real-world Graphs

➢GNN Algorithms

 GraphSage, GCN, GAT
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 3 labeled Graphs from OGB and DGL for node classification (RD, PD, PA)

 3 w/o labeled Graphs from SNAP for System performance testing (UK, FR, WB)

 2 labeled Graphs from OGB for link prediction task (CT, VS)

➢Training Task

 Node Classification, Link Prediction
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Performance (For more information, please refer to our manuscipt)

Runtime and Space Cost Performance on Different Graphs (20 epochs, time/sec, Mmain/GB)
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12x improvement 

in Runtime 

Efficiency
4.5× reduction in 

main memory 

usage

Play-and-plug



20

Runtime and  I/O Cost Analysis (Node Classification)
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Runtime and  I/O Cost Analysis (Link Prediction)



Different Hardware Configurations
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Device 2: GeForce RTX 3060 (12G), 𝑴𝒎𝒂𝒊𝒏 = 64G

Device 1: GeForce RTX 4080 (16G), 𝑴𝒎𝒂𝒊𝒏 = 128G

Most systems encounter 

out-of-memory issues



Conclusions
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➢We propose Capsule, an innovative out-of-core mechanism to tackle the 

scalability challenges of GNN Training.
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➢Algorithms

✓ Propagation-based partitioning algorithm optimized for GNN training

✓ Vertex importance-based subgraph trimming algorithm to fit subgraphs within 

GPU memory

✓ Modeling of the subgraph loading problem as the shortest Hamiltonian cycle 

problem to optimize loading order

➢Future work

✓ In the future, we plan to extend the training mechanism of Capsule to 

dynamic GNN training scenarios.



Thank you!
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Capsule Source Code Manuscript

Zezhong Ding

June. 26, 2025


