

PODS 2024

1

Play like a Vertex: A Stackelberg Game Approach for Streaming Graph Partitioning

ZEZHONG DING, YONGAN XIANG, SHANGYOU WANG,

XIKE XIE*, and S. KEVIN ZHOU

June. 13, 2024

Graph Partitioning

- ➢ **Graph partitioning is a key technology in distributed graph processing**
	- **① partition input large graph data into subgraphs (Graph Partitioning)**
	- assign each sub-graph to each computer
	- make graph analysis over the distributed graph

➢ **Objective**: Replication Factor (under the same load

Stream Load

Graph Partitioning: History

What would be the potentials in optimizing stream graph partitioning?

Graph Skewness

Skewness-aware Vertex-cut Partitioning(S5P) Framework

Skewness-aware Graph Clustering

➢ **Head and Tail vertices/edges are separated by a parameter** β :

- one-pass manner to get head and **tail clusters**
- ② **global degree-aware operation for head edges and get head clusters**
- ③ **local degree-aware operation for tail edges**

➢ **Advantages**

- ✓ **Skewness-aware**
- \checkmark *O*(|*E*|) to *O*(|*C*|), |*C*| is the number of **clusters,** $|C| \ll |E|$

6

Why consider game theory?

➢ **Quality:**

The optimization objectives of the game theory and the partitioning are consistent.

➢ **Efficiency:**

The game theory problems can be solved using parallel computing techniques.

Stackelberg Graph Game: Overview

➢ **Notations**

- ◆ Ω **and** Φ **are cost functions**
- ◆ θ **and** λ **are strategies of leader and Follower**

➢ **Stackelberg Game Model**

Stage 1 [Leaders' Side]: $θ^* = argmin_θ Ω(θ, λ)$ **Stage 2 [Followers' Side]**: $\lambda^* = argmin_{\lambda} \Phi(\theta, \lambda)$

➢ **Stackelberg Equlibrium**

 $\Omega(\theta^*, \lambda^*) \leq \Omega(\theta, \lambda^*)$ $\Phi(\theta^*, \lambda^*) \leq \Phi(\theta^*, \lambda)$

Leaders: head clusters (in blue) Followers: Tail clusters (in orange)

➢ *Two Questions*

how to enhance the quality?

 how to optimize the efficiency and memory overhead?

8

Stackelberg Graph Game: Quality

➢ **Total Cost Function(based on size and intersection)**

k is the number of partitions

 $F(c_i) = \sum_{i=1}^{n}$ $\Theta(c_i, c_j)$ I (i, j) $S_{c_i}(p_i) =$ δ \boldsymbol{k} $c_i |\cdot |p_i| +$ $F(c_i) + |c_i$ \boldsymbol{k} ➢ **Individual Cost of Clusters (based on size and intersection)**

 $c_j \in C_H \cup C_L$

The stackelberg game cost is the sum of all individual cost of clusters. (See Theorem 4) ➢ **OPT(Game) vs. Nash equilibrium: Price of Anarchy (Measure the maximum gap between the Nash equilibrium solution and the optimal solution)**

 $k + 1$

➢ **OPT(Partitioning) vs. S5P: RF** $RF \leq \chi_H \cdot k$ head part $+\sum_{i=1}^{\chi_T|V}$ $d_m\left(\frac{k-1}{d_m}\right)$ d_m $1-\rho$ $+\frac{i-1}{|U|}$ V −1 $\chi_T\!\cdot\!|V$ $+ 1 = f(\rho)$ tail part *Graph skewness*

The graph is more skewed, the RF bound of S5P is tighter.

9

See our paper for more details.

Stackelberg Graph Game: Efficiency and Memory Overhead

➢**Sketching:** Using the CM-Sketch probabilistic data structure to achieve approximate estimation of local optimization objectives, with theoretical guarantees provided by the sketch.

Cluster 1 Cluster 2 ➢**Parallelization:** Implementing parallel acceleration of the game process using cluster sharding and multithreading.

10

Evaluations

➢**Baseline partitioners**

- □ Offline partitioners: NE, METIS, HEP
- □ Streaming partitoners: HDRF, Greedy, DBH, 2PS-L, CLUGP
- □ Other game-based partitioners: RMGP, MDSGP, CVSP

➢**Partitioning metrics**

 \Box Replication factor (The load balance is set as 1.0)

 \Box Run-time

O Memory overhead

➢**Real-world Graphs**

 \Box 4 Social Graphs: e.g., FR(|V|=66M, |E|=1.8B, SIZE=31GiB) \Box 7 Web Graphs: e.g., UK7(|V|=106M, |E|=3.7B, SIZE=63GiB)

➢**Synthetic Graphs Generated by R-MAT**

11

⚫ Regression-based Graph Skewness

⚫ Planarization Graph Skewness

⚫ Pearson's First/Second Graph Skewness

Skewness: G1<G2<G³ ; G4<G5<G⁶

Performance(For more information, please refer to our paper)

Replication Factor of Different Graphs (lower is better)

➢ **Better replication factor than all streaming vertex partitioners**

Gamebased Methods

12

➢ **Better RF, efficiency, and memory overhead than all streaming game-based vertex partitioners**

Component Analysis

➢ **Skewness-aware Clustering**

- ✓ **8×** speedup and **6%** memory cost compared with Edge-Clustering method
- **replication factor** reduction with clustering
- ➢ **Stackelberg Game**

replication factor reduction with Stacklberg Game

Skewness Analysis

- ➢ Other partitioners exhibit **a substantial increase** in RF as the graphs are more skewed, while S5P has **smallest** RF increments
- ➢ Skewness: **(0.87, 0.17, 0.48, 626M)** to **(0.84, 0.19, 0.52,1B) ~** RF: **16.460** to **12.011**

➢**Graph skewness is an important but intractable property**

- ➢**S5P achieves high partitioning quality by considering graph skewness**
	- ✓ The **Stackelberg Graph Game** can utilize **graph skewness information** to improve partition quality.
	- ✓ **The key to improving the quality of streaming graph partitioning lies in how effectively you can leverage the information about graph skewness.**

➢**Future work**

Extend the skewness-aware partitioning paradigm to traditional graph computing systems and graph learning systems

18

19

Thank you!

S5P Source Code Personal Website

