

PODS 2024

## Play like a Vertex: A Stackelberg Game Approach for Streaming Graph Partitioning

#### ZEZHONG DING, YONGAN XIANG, SHANGYOU WANG,

XIKE XIE\*, and S. KEVIN ZHOU

June. 13, 2024





## **Graph Partitioning**

- Graph partitioning is a key technology in distributed graph processing
  - partition input large graph data into subgraphs (Graph Partitioning)
  - ② assign each sub-graph to each computer
  - ③ make graph analysis over the distributed graph



> **Objective**: Replication Factor (under the same load



Stream Load



**Distributed Nodes** 

**SIGMOD 2024** 

Play like a Vertex: A Stackelberg Game Approach for Streaming Graph Partitioning

2

## **Graph Partitioning: History**



What would be the potentials in optimizing stream graph partitioning?

#### **Graph Skewness**



#### **Skewness-aware Vertex-cut Partitioning(S5P) Framework**



5

## **Skewness-aware Graph Clustering**

Head and Tail vertices/edges are separated by a parameter β:



- (1) one-pass manner to get head and tail clusters
- (2) global degree-aware operation for head edges and get head clusters
- (3) local degree-aware operation for tail edges



#### > Advantages

- ✓ Skewness-aware
- ✓ O(|E|) to O(|C|), |C| is the number of clusters, |C| ≪ |E|

6

## Why consider game theory?



#### > Quality:

The optimization objectives of the game theory and the partitioning are consistent.

#### > Efficiency:

The game theory problems can be solved using parallel computing techniques.

### **Stackelberg Graph Game: Overview**

#### > Notations

- $\Omega$  and  $\Phi$  are cost functions
- $\theta$  and  $\lambda$  are strategies of leader and Follower

#### Stackelberg Game Model

**Stage 1** [Leaders' Side]:  $θ^* = argmin_θ Ω(θ, λ)$ **Stage 2** [Followers' Side]:  $λ^* = argmin_λ Φ(θ, λ)$ 

#### > Stackelberg Equiibrium

 $\Omega(\theta^*, \lambda^*) \le \Omega(\theta, \lambda^*)$  $\Phi(\theta^*, \lambda^*) \le \Phi(\theta^*, \lambda)$ 



Leaders: head clusters (in blue) Followers: Tail clusters (in orange)

#### > Two Questions

**D** how to enhance the quality?

how to optimize the efficiency and memory overhead?

## **Stackelberg Graph Game: Quality**





k is the number of partitions

> Individual Cost of Clusters (based on size and intersection)  $S_{c_i}(p_i) = \frac{\delta}{k} |c_i| \cdot |p_i| + \frac{F(c_i) + |c_i|}{k}$  $F(c_i) = \sum_{c_j \in C_H \cup C_L} \Theta(c_i, c_j) I(i, j)$ 

The stackelberg game cost is the sum of all individual cost of clusters. (See Theorem 4)

 OPT(Game) vs. Nash equilibrium: Price of Anarchy (Measure the maximum gap between the Nash equilibrium solution and the optimal solution)

*k* + 1



## The graph is more skewed, the RF bound of S5P is tighter.

See our paper for more details.

## **Stackelberg Graph Game: Efficiency and Memory Overhead**

Sketching: Using the CM-Sketch probabilistic data structure to achieve approximate estimation of local optimization objectives, with theoretical guarantees provided by the sketch.



Cluster 1 Cluster 2 > Parallelization: Implementing parallel acceleration of the game process using cluster sharding and multithreading.



**SIGMOD 2024** 

#### **Evaluations**

#### > Baseline partitioners

- □ Offline partitioners: NE, METIS, HEP
- Streaming partitoners: HDRF, Greedy, DBH, 2PS-L, CLUGP
- Other game-based partitioners: RMGP, MDSGP, CVSP

#### > Partitioning metrics

- □ Replication factor (The load balance is set as 1.0)
- □ Run-time
- □ Memory overhead

#### > Real-world Graphs

□ 4 Social Graphs: e.g., FR(|V|=66M, |E|=1.8B, SIZE=31GiB)
□ 7 Web Graphs: e.g., UK7(|V|=106M, |E|=3.7B, SIZE=63GiB)

**Regression-based Graph Skewness** 

**Planarization Graph Skewness** 

Pearson's First/Second Graph Skewness

#### > Synthetic Graphs Generated by R-MAT

| Graphs                | <b>V</b> | <b> E</b> | Skewness                |
|-----------------------|----------|-----------|-------------------------|
| $G_1$                 | 1.04M    | 314M      | (0.89,0.15,0.44,102M)   |
| <i>G</i> <sub>2</sub> | 1.04M    | 629M      | (0.87,0.17,0.48,626M)   |
| G <sub>3</sub>        | 1.04M    | 1.04B     | (0.84,0.19,0.52,1B)     |
| $G_4$                 | 67.1M    | 671M      | (1.16,0.048,0.145,469M) |
| <i>G</i> <sub>5</sub> | 67.1M    | 2.01B     | (1.11,0.051,0.152,1B)   |
| G <sub>6</sub>        | 67.1M    | 3.36B     | (1.07,0.053,0.157,3B)   |

#### Skewness: G<sub>1</sub><G<sub>2</sub><G<sub>3</sub>; G<sub>4</sub><G<sub>5</sub><G<sub>6</sub>

#### **Performance**(For more information, please refer to our paper)

|   |       |             |        | 1      |        |              |        | 1      |        |        |        |              |        |        |  |
|---|-------|-------------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------------|--------|--------|--|
|   |       | Partitioner | CLUGP  |        |        | 2PS-L        |        |        | HDRF   |        |        | S5P          |        |        |  |
|   | Graph |             | k:64   | k:128  | k:256  | <i>k</i> :64 | k:128  | k:256  | k:64   | k:128  | k:256  | <i>k</i> :64 | k:128  | k:256  |  |
|   |       | OK          | 14.288 | 17.522 | 20.636 | 15.112       | 18.915 | 23.200 | 17.860 | 22.617 | 27.023 | 11.614       | 15.391 | 19.055 |  |
|   |       | TW          | 8.808  | 10.817 | 11.861 | 10.642       | 13.074 | 15.577 | 9.520  | 11.789 | 14.408 | 7.583        | 9.068  | 10.526 |  |
| 3 | 0%    | FR          | 10.311 | 13.432 | 17.011 | 11.241       | 14.359 | 17.457 | 11.324 | 14.757 | 18.122 | 7.870        | 11.244 | 14.995 |  |
|   |       | LJ          | 4.913  | 5.471  | 5.945  | 5.036        | 5.593  | 6.045  | 6.778  | 7.763  | 8.545  | 4.549        | 5.112  | 5.636  |  |
|   |       | IT          | 1.908  | 1.973  | 2.041  | 3.680        | 4.110  | 4.420  | 12.538 | 14.500 | 16.469 | 1.273        | 1.232  | 1.210  |  |
|   |       | UK7         | 1.754  | 1.876  | 1.839  | 3.338        | 3.760  | 4.077  | 14.190 | 16.700 | 19.181 | 1.265        | 1.213  | 1.196  |  |
|   |       | IN          | 1.415  | 1.542  | 1.621  | 1.895        | 2.241  | 2.887  | 6.884  | 8.028  | 8.890  | 1.229        | 1.207  | 1.225  |  |
|   | 10/   | SK          | 2.299  | 2.584  | 2.566  | 4.001        | 5.466  | 7.029  | 16.561 | 19.413 | 21.766 | 1.337        | 1.310  | 1.293  |  |
| 9 | 1%    | UK2         | 1.561  | 1.698  | 1.692  | 2.644        | 2.752  | 2.921  | 9.414  | 10.673 | 11.791 | 1.371        | 1.227  | 1.238  |  |
|   |       | AR          | 2.015  | 1.929  | 2.005  | 3.409        | 3.803  | 4.119  | 12.599 | 14.768 | 16.762 | 1.131        | 1.213  | 1.233  |  |
|   |       | WB          | 1.446  | 1.493  | 1.485  | 1.829        | 1.836  | 1.822  | 5.951  | 6.646  | 7.283  | 1.296        | 1.178  | 1.188  |  |

#### Replication Factor of Different Graphs (lower is better)

#### > Better replication factor than all streaming vertex partitioners

| Par.  | RMGP |      |       | MDSGP |       |        | CVSP |      |       | CLUGP |      |       | S5P |      |       |  |
|-------|------|------|-------|-------|-------|--------|------|------|-------|-------|------|-------|-----|------|-------|--|
| G.    | RF   | Time | Mem.  | RF    | Time  | Mem.   | RF   | Time | Mem.  | RF    | Time | Mem.  | RF  | Time | Mem.  |  |
| OK    | 16.7 | 535  | 4.01  | 9.9   | 324   | 8.95   | 17.4 | 141  | 2.25  | 10.7  | 91   | 1.02  | 8.5 | 60   | 0.38  |  |
| TW    | -    | >24h | 48.70 | 6.8   | 5189  | 99.08  | -    | >24h | 56.01 | 7.6   | 1333 | 11.65 | 6.0 | 808  | 4.64  |  |
| FR    | 10.9 | 4553 | 70.20 | 7.6   | 4934  | 144.96 | 11.2 | 2078 | 80.69 | 7.2   | 3045 | 14.12 | 7.0 | 1466 | 7.22  |  |
| LJ    | 5.4  | 65   | 2.08  | 4.5   | 184   | 3.83   | 5.7  | 32   | 2.25  | 4.2   | 111  | 1.11  | 3.9 | 28   | 0.48  |  |
| WB    | 4.2  | 1871 | 61.10 | 6.2   | 6320  | 119.45 | 4.8  | 822  | 79.46 | 1.5   | 1101 | 25.11 | 1.1 | 696  | 12.90 |  |
| $G_6$ | -    | >24h | 115.5 | 4.9   | 11915 | 231.87 | -    | >24h | 110.8 | 4.8   | 4847 | 18.01 | 4.4 | 2620 | 8.06  |  |

Gamebased Methods

#### > Better RF, efficiency, and memory overhead than all streaming game-based vertex partitioners

**SIGMOD 2024** 

#### **Component Analysis**

#### > Skewness-aware Clustering

- ✓  $8 \times$  speedup and 6% memory cost compared with Edge-Clustering method
- ✓ replication factor reduction with clustering
- Stackelberg Game

✓ replication factor reduction with Stacklberg Game



#### **Skewness Analysis**

- Other partitioners exhibit a substantial increase in RF as the graphs are more skewed, while S5P has smallest RF increments
- ➢ Skewness: (0.87, 0.17, 0.48, 626M) to (0.84, 0.19, 0.52,1B) ~ RF: 16.460 to 12.011



> Graph skewness is an important but intractable property

- > S5P achieves high partitioning quality by considering graph skewness
  - ✓ The Stackelberg Graph Game can utilize graph skewness information to improve partition quality.
  - The key to improving the quality of streaming graph partitioning lies in how effectively you can leverage the information about graph skewness.

#### Future work

✓ Extend the skewness-aware partitioning paradigm to traditional graph computing systems and graph learning systems





# Thank you!

**S5P Source Code** 



**Personal Website** 



9